Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
North-Morris, Michael B.; Creath, Katherine; Porras-Aguilar, Rosario (Ed.)A novel Vision ray metrology technique is reported that estimates the geometric wavefront of a measurement sample using the sample-induced deflection in the vision rays. Vision ray techniques are known in the vision community to provide image formation models even when conventional camera calibration techniques fail. This work extends the use of vision rays to the area of optical metrology. In contrast to phase measuring deflectometry, this work relies on differential measurements, and hence, the absolute position and orientation between target and camera do not need to be known. This optical configuration significantly reduces the complexity of the reconstruction algorithms. The proposed vision ray metrology system does not require mathematical optimization algorithms for calibration and reconstruction – the vision rays are obtained using a simple 3D fitting of a line.more » « less
-
Precision glass molding is a viable process for the cost-effective volume production of freeform optics. Process development is complex, requiring iterative trials of mold manufacture and metrology, glass mold prototyping, metrology and functional testing. This paper describes the first iteration in the development of a process for an Alvarez lens for visible light. The challenges of this optic are extremely tight band-RMS tolerances on a freeform shape over a maximum clear aperture of 45 mm, a 16:1 aspect ratio and a freeform departure of 329 micrometers. A freeform glass mold for an Alvarez lens was manufactured by coordinated-axis diamond turning in a mold substrate using a custom tool error correction method. The results of prototype precision glass molding are also reported. Mold surfaces and molded optical surfaces are analyzed with scanning white light interferometry. A surface roughness of approximately 3 nm RMS is obtained for both the mold substrate and the glass optic with high-fidelity reproduction of micro-surface structure in the glass. These measurements also identify challenging areas, particularly the presence of mid-spatial frequency errors on the optic originating from the machine thermal control system. The form of the molds was also measured with a profilometer; however, the mold surface does not agree with the expected prescription with an overall deviation in form of approximately 10 μm. The machining process is expected to have sub-micrometer error and the sources of this discrepancy are still being determined. Metrology of the glass optics is currently in progress.more » « less
An official website of the United States government
